
OX PowerDNS Cloud Control

Overview
Sep 16, 2022

Release 2.2.0-BETA1

©2022 by Open-Xchange AG and PowerDNS.COM BV. All rights reserved. Open-Xchange, Pow-erDNS, the Open-Xchange logo and PowerDNS logo are trademarks or registered trademarksof Open-Xchange AG. All other company and/or product names may be trademarks or regis-tered trademarks of their owners. Information contained in this document is subject to changewithout notice.

OX PowerDNS Cloud ControlOverview

Contents
1 Cloud Control 11.1 Simple deployment - Recursor . 11.2 Simple deployment - Auth . 11.3 Complex deployment . 21.4 Rules & Actions . 21.5 DNSdist with co-hosted Recursors . 31.6 DNSdist with DoH and/or DoT listeners . 31.7 ZoneControl deployment . 4
2 Cloud Control on Kubernetes 52.1 Auth . 52.1.1 Auth agent . 62.2 DNSdist . 62.2.1 DNSdist agent . 72.3 Recursor . 82.3.1 Recursor agent . 92.4 Resolver . 92.5 Ruleset . 102.6 ZoneControl . 102.6.1 ZoneControl Syncer . 11
3 Helm Charts 123.1 Helm Chart: powerdns-crds . 123.2 Helm Chart: powerdns . 123.3 Helm Chart: powerdns-operators . 12
4 Getting Started 134.1 Install Tools . 134.2 Download Helm Charts . 134.3 Install/Upgrade CloudControl CRDs . 144.4 Install/Upgrade CloudControl . 154.4.1 Registry Credentials . 154.4.2 Cluster Networking . 154.4.3 Deploying Recursor . 174.4.4 Adding DNSdist . 184.4.5 Adding an external Resolver . 194.4.6 Adding a DNSdist rule . 214.4.7 Using DNSdist rules to route traffic . 224.4.8 Separating config into multiple files . 244.4.9 Exposing dnsdist . 254.4.10 Deploying ZoneControl . 25

i

OX PowerDNS Cloud ControlOverview

5 Advanced Examples 275.1 DNSdist: DoH . 275.2 DNSdist: DoT . 285.3 DNSdist: Co-hosted Recursor . 295.4 DNSdist: Lua script . 295.4.1 Lua script from file . 305.5 Recursor: Lua script & config . 315.5.1 Lua script and config from file . 315.6 Multi-homed pods . 325.6.1 Configuring multi-homed Recursor pods 335.6.2 Configuring multi-homed DNSdist with co-hosted Recursor pods 34
6 Troubleshooting 376.1 Accessing DNSdist console . 376.2 Pod Events . 38

ii

OX PowerDNS Cloud ControlOverview

1 Cloud Control
Cloud Control facilitates orchestration, management & monitoring of OX PowerDNS productsin Kubernetes deployments. OX PowerDNS products supported in this version are:

• OX PowerDNS DNSdist - A DNS, DoS and abuse-aware loadbalancer that brings out thebest possible performance in any DNS deployment.
• OX PowerDNS Recursor - A high-performing, low latency DNS resolver.
• OX PowerDNS Authoritative Server - A versatile authoritative server for hosting domainnames.
• OX PowerDNS ZoneControl - A graphical web-based interface for managing domains onthe OX PowerDNS Authoritative Server.

1.1 Simple deployment - Recursor
Cloud Control can be used to roll out a set of Recursor instances, with a set of DNSdists infront. In the below diagram you can see a set of DNSdist instances, with a default pool sendingall traffic to a set of Recursor instances:

1.2 Simple deployment - Auth
Cloud Control can be used to roll out a set of Auth instances, with a set of DNSdists in front. Inthe below diagram you can see a set of Auth instances, with a default pool sending all traffic toa set of Auth instances:

1

OX PowerDNS Cloud ControlOverview

1.3 Complex deployment
In a more complex deployment you can deploy both Recursor & Auth instances, having DNS-dist using multiple pools to send traffic to the different instances based on the incomingqueries/traffic. In the below example you see a setup where both Recursor & Auth are de-ployed, with DNSdist using rules to send some traffic to Auth, while defaulting to sendingqueries to Recursor. The Recursor > Auth arrow signifies the use of forward zones, which in-structs the Recursor to forward queries for certain zones to Auth.

1.4 Rules & Actions
Deciding which traffic to send to each pool is handled by DNSdist’s packet policies, which offersa mechanism to define rules and corresponding actions. In the context of the above diagram,such rules & actions could be:

2

OX PowerDNS Cloud ControlOverview

Rule Action‘QPS’ of requests from the sender has exceeded a certainvalue Answer request with ‘RE-FUSED’‘Opcode’ of request is ‘Notify’ let Auth pool handle the re-quest‘Qtype’ of request is ‘AXFR’ let Auth pool handle the re-quest

Note: By default, all requests will be handled by the ‘Default Pool’

1.5 DNSdist with co-hosted Recursors
In a high load environment, the overhead on Kubernetes network components from the DNS-dist to Recursor traffic can potentially become a bottleneck and/or lead to unacceptable latency.For these scenarios it is possible to have 1 or more Recursor instances running within the samePod as DNSdist. Such a deployment would look as follows:

1.6 DNSdist with DoH and/or DoT listeners
Inbound traffic to DNSdist is supported not only via the standard UDP & TCP over port 53(Do53), but also via DoH and DoT. When configured, you can have a deployment that looks asfollows:

3

OX PowerDNS Cloud ControlOverview

1.7 ZoneControl deployment
Cloud Control can be used to roll out a set of ZoneControl instances and configure the end-points of Auth instances that it should be able to manage. In the below diagram you can seea set of ZoneControl instances, configured to manage 2 sets of Auth instances, one within thesame Cloud Control deployment and another in a separate deployment:

4

OX PowerDNS Cloud ControlOverview

2 Cloud Control on Kubernetes
Cloud Control provides a Helm Chart which allows for the definition & configuration of thefollowing:

• auth - Definition of a set of OX PowerDNS Authoritative Server instances and correspond-ing configuration
• dnsdist - Definition of a set of OX PowerDNS DNSdist instances and corresponding con-figuration
• recursor - Definition of a set of OX PowerDNS Recursor instances and correspondingconfiguration
• resolver - Definition of a set of external resolver endpoints
• ruleset - Definition of a set of rules which can be applied to DNSdist instances
• zonecontrol - Definition of a set of OX PowerDNS ZoneControl instances and correspond-ing configuration

The following sections discuss each in more detail.

2.1 Auth
For each auth defined in the input to the Helm Chart, objects of the following types (aka kind inKubernetes terminology) will be created in Kubernetes:
Kind API Group DescriptionAuth cloudcontrol.

powerdns.
com

Object which holds configuration of the Auth instances

Deployment core Deployment of Auth pods (including ReplicaSet)Service core Service which can be discovered by DNSdist & Recursoragents to direct traffic to the Auth pods
When an auth instance is configured using the Helm Chart, it will deploy the following to Kuber-netes:

5

OX PowerDNS Cloud ControlOverview

As the diagram shows an Auth pod will consist of 2 containers + 1 init container:
• auth-init - Prepares configuration for Auth.
• auth - Container running OX PowerDNS Authoritative Server.
• agent - Contains an agent that watches several kinds of objects in Kubernetes within thenamespace. If any watched objects are created/updated/removed, the agent will sync anycorresponding configuration items to the running Auth instance. The agent is describedin detail in the next chapter.

2.1.1 Auth agent
The Auth agent is responsible for keeping the configuration of the running Auth process in syncwith the desired configuration. If any configuration changes are needed, the agent will attemptto synchronize them without restarting the Auth process.
Items which are watched by the agent are:
Kind PurposeAuth The object which contains the configuration details for an Auth deployment.If any updates are detected the agent will attempt to update the configura-tion of Auth without having to restart it.Pod The agent watches the pod which it is a part of. Particularly the statuses ofeach container inside the pod are observed, to ensure the agent can syn-chronize an Auth instance again if it’s container was recycled for any reason.GeoIP zone-files The agent watches for changes in the GeoIP zonefiles that can be config-ured for the GeoIP backend using the domains attribute. If any changes aredetected the agent will instruct Auth to reload the zonefiles.

2.2 DNSdist
For each dnsdist defined in the input to the Helm Chart, objects of the following types (kind inKubernetes) will be created in Kubernetes:

6

OX PowerDNS Cloud ControlOverview

Kind API Group DescriptionDNSDist cloudcontrol.
powerdns.com

Object which holds configuration of the DNSdist instances
Deployment core Deployment of DNSdist pods (including ReplicaSet)Service core Service which can be used to direct traffic to the DNSdistpods
When a dnsdist instance is configured using the Helm Chart, it will deploy the following toKubernetes:

As the diagram shows a DNSdist pod will consist of 3 containers + 1 init container:
• dnsdist-init - Prepares configuration for dnsdist.
• dnsdist - Container running OX PowerDNS DNSdist.
• rpc-server - Runs an API that is responsible for handling JSON messages over HTTP fromthe agent and forwarding them to dnsdist.
• agent - Contains an agent that watches several kinds of objects in Kubernetes within thenamespace. If any watched objects are created/updated/removed, the agent will syncany corresponding configuration items to the running dnsdist instance. The agent is de-scribed in detail in the next chapter.

2.2.1 DNSdist agent
The DNSdist agent is responsible for keeping the configuration of the running DNSdist processin sync with the desired configuration. If any configuration changes are needed, the agentwill attempt to synchronize them without restarting the DNSdist process. These configurationchanges range from performance parameters defined in the DNSDist object to adjusting serverpools according to changes observed in Recursor, Auth & Resolver deployments.
Items which are watched by the agent are:

7

OX PowerDNS Cloud ControlOverview

Kind PurposeDNSDist The object which contains the configuration details for a DNSdist deploy-ment. If any updates are detected the agent will attempt to update the con-figuration of DNSdist without having to restart it.Pod The agent watches the pod which it is a part of. Particularly the statuses ofeach container inside the pod are observed, to ensure the agent can syn-chronize a DNSdist instance again if it’s container was recycled for any rea-son.DNSDistRule Any rule objects which match the RuleSelector on the DNSDist object arewatched and synchronized to the DNSdist process if needed. Any new rulesthat match the RuleSelector are also applied as soon as they are observedby the agent.Service &Endpoints The agent watches for changes in the Endpoints of any Service objects whichmatch the ServiceSelector of the DNSDist object. This allows the agent todiscover the servers that should be part of the pool(s) in DNSdist and worksfor Recursor, Auth & Resolver deployments.

2.3 Recursor
For each recursor defined in the input to the Helm Chart, objects of the following types (aka
kind in Kubernetes terminology) will be created in Kubernetes:
Kind API Group DescriptionRecursor cloudcontrol.

powerdns.
com

Object which holds configuration of the Recursor instances

Deployment core Deployment of Recursor pods (including ReplicaSet)Service core Service which can be discovered by DNSdist agents to directtraffic to the Recursor pods
When a recursor instance is configured using the Helm Chart, it will deploy the following toKubernetes:

As the diagram shows a Recursor pod will consist of 2 containers + 1 init container:
• recursor-init - Prepares configuration for Recursor.
• recursor - Container running OX PowerDNS Recursor.

8

OX PowerDNS Cloud ControlOverview

• agent - Contains an agent that watches several kinds of objects in Kubernetes within thenamespace. If any watched objects are created/updated/removed, the agent will sync cor-responding configuration items to the running Recursor instance. The agent is describedin detail in the next chapter.

2.3.1 Recursor agent
The Recursor agent is responsible for keeping the configuration of the running Recursor pro-cess in sync with the desired configuration. If any configuration changes are needed, the agentwill attempt to synchronize them without restarting the Recursor process.
Items which are watched by the agent are:
Kind PurposeRecursor The object which contains the configuration details for a Recursor deploy-ment. If any updates are detected the agent will attempt to update the con-figuration of Recursor without having to restart it.Pod The agent watches the pod which it is a part of. Particularly the statuses ofeach container inside the pod are observed, to ensure the agent can syn-chronize a Recursor instance again if it’s container was recycled for any rea-son.Service &Endpoints The agent watches for changes in the Endpoints of any Service objects whichmatch the ServiceSelector of the Recursor object. This allows the agent todiscover the endpoints that should be part of the forward zones in Recursor.

2.4 Resolver
For each resolver defined in the input to the Helm Chart, objects of the following types (aka
kind in Kubernetes terminology) will be created in Kubernetes:
Kind API Group DescriptionEndpoints core Object that holds each IP:port combination defined for theresolverService core Service which can be discovered by DNSdist & Recursoragents to direct traffic to the resolver’s endpoints
When a resolver instance is configured using the Helm Chart, it will deploy the following toKubernetes:

9

OX PowerDNS Cloud ControlOverview

2.5 Ruleset
For each ruleset defined in the input to the Helm Chart, objects of the following types (aka
kind in Kubernetes terminology) will be created in Kubernetes:
Kind API Group DescriptionDNSDistRule cloudcontrol.

powerdns.com
Object which holds configuration of a set of rules whichcan be discovered by DNSdist agents and applied to DNS-dist without restarting

2.6 ZoneControl
For each zonecontrol defined in the input to the Helm Chart, objects of the following types (aka
kind in Kubernetes terminology) will be created in Kubernetes:
Kind API Group DescriptionZoneControl cloudcontrol.

powerdns.
com

Object which holds configuration of the ZoneControl in-stances
Deployment core Deployment of ZoneControl pods (including ReplicaSet)Service core Service which can be used to expose ZoneControl instancesIngress networking.

k8s.io
Ingress which can be used to expose ZoneControl instancesoutside of the cluster via HTTP(S)

When a zonecontrol instance is configured using the Helm Chart, it will deploy the following toKubernetes:

As the diagram shows a ZoneControl instance will consist of a ZoneControl deployment with 1container + 1 init container and a ZoneControl Syncer deployment. The ZoneControl Deploy-ment contains the GUI and can have multiple replicas, while the ZoneControl Syncer deploy-ment has a single replica and is used to synchronise configuration changes to the ZoneControlinstances.
• zonecontrol-init - Prepares configuration for ZoneControl.
• zonecontrol - Container running OX PowerDNS ZoneControl.
• syncer - Contains an operator that watches ZoneControl objects in Kubernetes within thenamespace. If any watched objects are updated, the syncer will synchronise any corre-sponding configuration items to the running ZoneControl instances.

10

OX PowerDNS Cloud ControlOverview

2.6.1 ZoneControl Syncer
The ZoneControl Syncer agent is responsible for keeping the configuration of the runningZoneControl processes in sync with the desired configuration. If any configuration changesare needed, the syncer will attempt to synchronize them without restarting the ZoneControlprocess.
Items which are watched by the syncer are:
Kind PurposeZoneControl The object which contains the configuration details for a ZoneControl de-ployment. If any updates are detected the syncer will attempt to update theconfiguration of ZoneControl without having to restart it.

11

OX PowerDNS Cloud ControlOverview

3 Helm Charts
CloudControl has several Helm Charts available to manage & deploy PowerDNS environmentsto Kubernetes. The main charts are as follows:

• powerdns-crds: Chart to install/upgrade the CloudControl CRDs
• powerdns: Chart to install/upgrade CloudControl deployments
• powerdns-operators: Chart that allows for installation of optional operators

3.1 Helm Chart: powerdns-crds
This chart is used to deploy & upgrade the CRDs used by PowerDNS CloudControl deployments.Having these CRDs deployed to the cluster is a prerequisite to being able to install an environ-ment using the powerdns Helm chart.
Scope of objects: cluster-scoped, requires cluster privileges on CRD objects.

3.2 Helm Chart: powerdns
This chart is used to deploy & upgrade the PowerDNS CloudControl deployments.
Scope of objects: namespace-scoped, does not require any cluster privileges.

3.3 Helm Chart: powerdns-operators
This optional chart is used to deploy auxiliary Kubernetes Operators that may be used to easilydeploy additional components to support CloudControl PowerDNS deployments. Due to thecomplexity of persistent storage in a Kubernetes environment we recommend you leverageany existing facilities you may have to provide the services offered by this chart instead of usingthis chart to deploy them.
Currently contains Operators for:

• Postgres: Allows for automated creation of Postgres databases, potentially used by Auth& ZoneControl deployments.
Scope of objects: cluster-scoped & namespace-scoped, requires cluster privileges on CRD, Clus-terRole and ClusterRoleBinding objects .

12

OX PowerDNS Cloud ControlOverview

4 Getting Started
4.1 Install Tools
You will need the following software on the machine from which you want to deploy CloudCon-trol:

• Kubectl (Configured for your target Kubernetes cluster)
• Helm v3 (https://helm.sh/docs/intro/install/)

4.2 Download Helm Charts
CloudControl Helm Charts are available on the Open-Xchange registry, located at:registry.open-xchange.com.
There are several methods for obtaining Helm Charts using Helm’s CLI, in this chapter we areusing a method that copies the chart locally to your filesystem prior to using it. Any Helm-supportedmethodwill work, but youwill need to adjust the commands in this guide accordinglyif you wish to utilise a different method.
First step will be to make Helm aware of the CloudControl repository (replace username &password with your OX registry credentials):
helm repo add cloudcontrol https://registry.open-xchange.com/chartrepo/cloudcontrol \
--username=REGISTRY_USERNAME_HERE --password=REGISTRY_PASSWORD_HERE

Once the repository has been added you can pull the CloudControl Helm Charts. To pull thepowerdns Helm Chart and export it to your current working directory use the following com-mands:
Ensure repo data is up-to-date
helm repo update

Pull the Helm Charts & unpack
helm pull cloudcontrol/powerdns-crds -d . --version=2.2.0-BETA1 --untar
helm pull cloudcontrol/powerdns -d . --version=2.2.0-BETA1 --untar
helm pull cloudcontrol/powerdns-operators -d . --version=2.2.0-BETA1 --untar

13

https://helm.sh/docs/intro/install/

OX PowerDNS Cloud ControlOverview

4.3 Install/Upgrade CloudControl CRDs
The CloudControl CRDs can be installed or upgraded using the powerdns-crdsHelm Chart. Whilethe chart only deploys cluster-scoped objects (CRDs), you need to provide a namespace to allowHelm to store the relevant information about this deployment. This ensures you can easilyupgrade to a newer version in the future.
To install the CRDs with a Helm release name of ‘pdnscrds’ stored in a namespace ‘pdnscrds’:
helm install pdnscrds ./powerdns-crds --namespace pdnscrds

Note: you can add --create-namespace if the namespace does not exist yet and you haveprivileges to create it
Using kubectl you should now be able to see the corresponding Kubernetes objects created:
Kubectl command to show CRD objects (filtered for 'cloudcontrol')
kubectl get crd | grep cloudcontrol

Kubectl output
dnsdistrules.cloudcontrol.powerdns.com <timestamp of creation>
zonecontrols.cloudcontrol.powerdns.com <timestamp of creation>
auths.cloudcontrol.powerdns.com <timestamp of creation>
recursors.cloudcontrol.powerdns.com <timestamp of creation>
dnsdists.cloudcontrol.powerdns.com <timestamp of creation>

Result should be a list of CRDs within the cloudcontrol.powerdns.com group as shown above.
To upgrade the CRDs, you can use the helm upgrade command. For example:
helm upgrade pdnscrds ./powerdns-crds --namespace pdnscrds

Note: Since the Helm upgrade command needs to have awareness of the previous in-stall/upgrade, it is crucial to specify the same release and namespace (both ‘pdnscrds’ in thisexample). If you try to upgrade but do not specify the existing release and namespace, theupgrade of the CRDs will fail (if it does fail, Helm will tell you and the old CRDs will remainuntouched)

14

OX PowerDNS Cloud ControlOverview

4.4 Install/Upgrade CloudControl
The CloudControl Helm Chart has a large amount of configurable options, which are detailed inthe reference documentation. In the next few chapters themost important parts are discussed.

4.4.1 Registry Credentials
Since the CloudControl images are in a protected repository there is a requirement to configurecredentials in the Helm Chart input YAML file. These need to be configured with the followingblock:
registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

Make sure the username & password match your credentials for the OX registry.

4.4.2 Cluster Networking
To be able to support Kubernetes clusters with IPv4, IPv6 or dual stack (IPv4 & IPv6) configu-rations, it is required to ensure the ‘ipFamily’ configuration in the helm values matches yourcluster. The ‘ipFamily’ section contains the following parameters:

• ipv4: Whether or not your cluster has IPv4 enabled (Default: true)
• ipv6: Whether or not your cluster has IPv6 enabled (Default: false)
• families: Preference of IP families on your cluster, if it is a dualstack cluster

To ensure your deployment is correctly configured, you need to provide one of the 4 possiblevariations:

IPv4 only (default)
Networking configuration
ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

Note: ‘families’ is ignored in this configuration. It is only used in a dualstack setup.

15

OX PowerDNS Cloud ControlOverview

IPv6 only
Networking configuration
ipFamily:
ipv4: false
ipv6: true
families:
- "IPv4"
- "IPv6"

Note: ‘families’ is ignored in this configuration. It is only used in a dualstack setup.

Dualstack - IPv4 primary
If you are running a dualstack cluster, you can check any Pod to see if your cluster has a pref-erence for IPv4 or IPv6. Your pods will have a ‘podIP’ and 2 values for ‘podIPs’. If the ‘podIP’ isan IPv4 address as shown in the example below, then you are running a cluster with IPv4 asprimary:
podIP: 172.17.183.4 # IPv4
podIPs:
- ip: 172.17.183.4 # IPv4
- ip: fd43:128b:8658:b73b:3eb7:2e30:8815:3f6 # IPv6

Configuration for dualstack with IPv4 primary:
Networking configuration
ipFamily:
ipv4: true
ipv6: true
families:
- "IPv4" # IPv4 is primary
- "IPv6"

Dualstack - IPv6 primary
If you are running a dualstack cluster, you can check any Pod to see if your cluster has a pref-erence for IPv4 or IPv6. Your pods will have a ‘podIP’ and 2 values for ‘podIPs’. If the ‘podIP’ isan IPv6 address as shown in the example below, then you are running a cluster with IPv6 asprimary:
podIP: fd43:128b:8658:b73b:3eb7:2e30:8815:3f6 # IPv6
podIPs:
- ip: fd43:128b:8658:b73b:3eb7:2e30:8815:3f6 # IPv6
- ip: 172.17.183.4 # IPv4

Configuration for dualstack with IPv6 primary:
Networking configuration
ipFamily:
ipv4: true
ipv6: true
families:

(continues on next page)

16

OX PowerDNS Cloud ControlOverview

(continued from previous page)
- "IPv6" # IPv6 is primary
- "IPv4"

For the remainder of the guide we will assume the cluster is running on the ‘IPv4 only’ scenario.If your cluster has a different setup please make sure you substitute accordingly.

4.4.3 Deploying Recursor
To deploy a set of Recursor instances, include an entry in the YAML file under the ‘recursors’parent, such as:
recursors:
myrecursor:
replicas: 3

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above file will create a set of Recursor instances named ‘myrecursor’ and the Deploymentin Kubernetes will have a ReplicaSet with replicas=3. If you save this file as ‘values.yaml’ in yourcurrent working directory you should be able to use the Helm Chart to create the Recursorinstances:
The namespace
CC_NAMESPACE=my-namespace
HELM_RELEASE=ccdemo

helm install $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE --create-namespace \
--values ./values.yaml

Note: you can remove --create-namespace if you have an existing namespace to deploy into
Using kubectl you should now be able to see the corresponding Kubernetes objects created:
Kubectl command to show all objects in a namespace
kubectl get all --namespace=$CC_NAMESPACE

Kubectl output
NAME READY STATUS RESTARTS AGE
pod/myrecursor-589559675d-d57jk 1/1 Running 0 3m12s
pod/myrecursor-589559675d-m779s 1/1 Running 0 3m12s
pod/myrecursor-589559675d-xxrvc 1/1 Running 0 3m12s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

(continues on next page)

17

OX PowerDNS Cloud ControlOverview

(continued from previous page)
service/recursor-myrecursor ClusterIP None <none> 5353/TCP 3m12s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/myrecursor 3/3 3 3 3m12s

NAME DESIRED CURRENT READY AGE
replicaset.apps/myrecursor-589559675d 3 3 3 3m12

Result should be a deployment + replicaset + service + a number of pods equal to the ‘replicas’value from the values.yaml file.

4.4.4 Adding DNSdist
To add a set of DNSdist instances to our deployment, include an entry in the YAML file underthe ‘dnsdists’ parent, such as:
dnsdists:

mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

recursors:
myrecursor:
replicas: 3

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above will add a set of DNSdist instances named ‘mydnsdist’ and the Deployment in Kuber-netes will have a ReplicaSet with replicas=2. The ‘pools’ configuration instruct DNSdist’s agentto make sure all instances of ‘myrecursor’ are added to the default pool in DNSdist. The ‘pack-etcache’ with ‘maxEntries’ configuration ensures the cache for this pool will be able to hold200000 entries.
Save the values.yaml file and upgrade the environment using the Helm Chart:
The namespace
CC_NAMESPACE=my-namespace

Helm release name
HELM_RELEASE=ccdemo

(continues on next page)

18

OX PowerDNS Cloud ControlOverview

(continued from previous page)
helm upgrade $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE --values=./values.yaml

Using kubectl you should now be able to see the corresponding Kubernetes objects created forDNSdist:
Kubectl command to show all objects in a namespace
kubectl get all --namespace=$CC_NAMESPACE

Kubectl output
NAME READY STATUS RESTARTS AGE
pod/mydnsdist-775cbf55d9-qjtks 3/3 Running 1 15m
pod/mydnsdist-775cbf55d9-t8fbk 3/3 Running 1 15m
pod/myrecursor-589559675d-d57jk 1/1 Running 0 27m
pod/myrecursor-589559675d-m779s 1/1 Running 0 27m
pod/myrecursor-589559675d-xxrvc 1/1 Running 0 27m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/recursor-myrecursor ClusterIP None <none> 5353/TCP 27m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/mydnsdist 2/2 2 2 15m
deployment.apps/myrecursor 3/3 3 3 27m

NAME DESIRED CURRENT READY AGE
replicaset.apps/mydnsdist-775cbf55d9 2 2 2 15m
replicaset.apps/myrecursor-589559675d 3 3 3 27m

4.4.5 Adding an external Resolver
To add a set of external resolvers to our deployment, include an entry in the YAML file underthe ‘resolvers’ parent, such as:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor
- group: myresolver

packetcache:
maxEntries: 200000

recursors:
myrecursor:
replicas: 3

resolvers:
myresolver:
ips:
- 9.9.9.9
- 149.112.112.112

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE

(continues on next page)

19

OX PowerDNS Cloud ControlOverview

(continued from previous page)
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above will add a Service named ‘myresolver’ in Kubernetes which will have an Endpointsobject containing the IP addresses (in this example the Quad9 IPs). By adding ‘myresolver’to the ‘default’ pool in DNSdist, traffic will be loadbalanced between the Recursor & resolverendpoints (not a realistic scenario, which will be tackled in the next chapter).
Save the values.yaml file and upgrade the environment using the Helm Chart:
The namespace
CC_NAMESPACE=my-namespace

Helm release name
HELM_RELEASE=ccdemo

helm upgrade $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE --values=./values.yaml

Using kubectl you should now be able to see the corresponding Kubernetes objects created forresolver (the service object named ‘myresolver’):
Kubectl command to show all objects in a namespace
kubectl get all --namespace=$CC_NAMESPACE

Kubectl output
NAME READY STATUS RESTARTS AGE
pod/mydnsdist-775cbf55d9-qwvrq 3/3 Running 0 22s
pod/mydnsdist-775cbf55d9-swz2w 3/3 Running 0 22s
pod/myrecursor-589559675d-5sqmg 1/1 Running 0 22s
pod/myrecursor-589559675d-cv6bl 1/1 Running 0 22s
pod/myrecursor-589559675d-sptfh 1/1 Running 0 22s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/recursor-myrecursor ClusterIP None <none> 5353/TCP 22s
service/resolver-myresolver ClusterIP None <none> 53/TCP 22s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/mydnsdist 2/2 2 2 22s
deployment.apps/myrecursor 3/3 3 3 22s

NAME DESIRED CURRENT READY AGE
replicaset.apps/mydnsdist-775cbf55d9 2 2 2 22s
replicaset.apps/myrecursor-589559675d 3 3 3 22s

20

OX PowerDNS Cloud ControlOverview

4.4.6 Adding a DNSdist rule
To add more logic to DNSdist instances you can create rules under the ‘rulesets’ parent andassigning them to DNSdist objects, such as:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor
- group: myresolver

packetcache:
maxEntries: 200000

rulegroups:
- traffic-filters

recursors:
myrecursor:
replicas: 3

resolvers:
myresolver:
ips:
- 9.9.9.9
- 149.112.112.112

rulesets:
block-traffic-ruleset:
group: traffic-filters
type: DNSDistRule
priority: 100
rules:
- name: Block ANY

combinator: AND
selectors:
- QType: ANY

action:
RCode:
rcode: "REFUSED"

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above will add a DNSDistRule object named ‘block-traffic-ruleset’ in Kubernetes. This rulewill select incoming queries with QType=’ANY’ and send a response ‘REFUSED’. This rule istagged with ‘group’ = ‘traffic-filters’, which is also added to the ‘mydnsdist’ rulegroups list, as-sociating this rule to the DNSdist instances. More details on the specification of rules can befound in the reference guide.
Save the values.yaml file and upgrade the environment using the Helm Chart:

21

OX PowerDNS Cloud ControlOverview

The namespace
CC_NAMESPACE=my-namespace

Helm release name
HELM_RELEASE=ccdemo

helm upgrade $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE --values=./values.yaml

Using kubectl you should now be able to see the corresponding Kubernetes objects if youspecifically request them (since kubectl will not show any custom object types with ‘get all’):
Kubectl command to show all DNSDistRule objects in a namespace
kubectl get dnsdistrule --namespace=$CC_NAMESPACE

Kubectl output
NAME AGE
block-traffic-ruleset 6s

4.4.7 Using DNSdist rules to route traffic
In a previous step we added recursors & resolvers to the default pool, but it would make moresense to have them in separate pools so they can serve different purposes. Rules allow thisbehaviour to be configured, such as:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

external:
serverGroups:
- group: myresolver

packetcache:
maxEntries: 200000

rulegroups:
- traffic-filters
- traffic-routers

recursors:
myrecursor:
replicas: 3

resolvers:
myresolver:
ips:
- 9.9.9.9
- 149.112.112.112

rulesets:
route-traffic-ruleset:
group: traffic-routers
type: DNSDistRule
priority: 200
rules: (continues on next page)

22

OX PowerDNS Cloud ControlOverview

(continued from previous page)
- name: External IPv6 resolution

combinator: AND
selectors:
- QType: AAAA

action:
Pool:
poolname: "external"

block-traffic-ruleset:
group: traffic-filters
type: DNSDistRule
priority: 100
rules:
- name: Block ANY
combinator: AND
selectors:
- QType: ANY

action:
RCode:

rcode: "REFUSED"
registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

In the above example we moved the ‘myresolver’ group to a new pool named ‘external’. Also, anew ruleset ‘route-traffic-ruleset’ was added which will match any queries with ‘QType’ = ‘AAAA’and assign the pool named ‘external’ to handle those queries.
Save the values.yaml file and upgrade the environment using the Helm Chart:
The namespace
CC_NAMESPACE=my-namespace

Helm release name
HELM_RELEASE=ccdemo

helm upgrade $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE --values=./values.yaml

Using kubectl you should now be able to see the new Kubernetes objects if you specificallyrequest them (since kubectl will not show any custom object types with ‘get all’):
Kubectl command to show all DNSDistRule objects in a namespace
kubectl get dnsdistrule --namespace=$CC_NAMESPACE

Kubectl output
NAME AGE
block-traffic-ruleset 33m
route-traffic-ruleset 2s

23

OX PowerDNS Cloud ControlOverview

4.4.8 Separating config into multiple files
As you start adding more instances & configuration options to the Helm Chart input file it be-comes harder to make sense of the config. A recommended approach to improving this is tomake use of Helm’s ability to add multiple values files to the arguments of the helm commandline. For example:
generic.yaml:
registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

rulesets.yaml:
rulesets:
block-traffic-ruleset:
group: traffic-filters
type: DNSDistRule
priority: 100
rules:
- name: Block ANY
combinator: AND
selectors:
- QType: ANY

action:
RCode:

rcode: "REFUSED"

instances.yaml:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

rulegroups:
- traffic-filters

recursors:
myrecursor:
replicas: 3

You can then run helm as follows:

24

OX PowerDNS Cloud ControlOverview

The namespace
CC_NAMESPACE=my-namespace

Helm release name
HELM_RELEASE=ccdemo

helm upgrade $HELM_RELEASE ./powerdns --namespace $CC_NAMESPACE \
--values=./generic.yaml --values=./rulesets.yaml --values=./instances.yaml

4.4.9 Exposing dnsdist
We now have a set of dnsdist instances running, but to complete the setup we need to makesure we have a method to direct traffic to the dnsdist instances. You can find out the differentmethods to expose dnsdist instances by reading the chapter ‘Exposing dnsdist’ in the referenceguide.

4.4.10 Deploying ZoneControl
If you have one or more deployments of Auth running, you can deploy ZoneControl to managethe zones and records using a graphical user interface. This can be done by including an entryunder the ‘zonecontrols’ parent.
Since this will require a Postgres database, we either need to have an existing database avail-able for usage, or the extra Helm chart named powerdns-operators can be used to provision anOperators that creates Postgres databases for us. In the below example we will make use ofthe operator approach. To do so, we need to make sure the operator is installed, which can bedone as follows:
The release we're working with
CCTAG=2.2.0-BETA1

The namespace
CCOPS_NAMESPACE=ccops

Helm release name
HELM_RELEASE=ccops

Ensure repo data is up-to-date
helm repo update

Pull the Helm Chart & unpack
helm pull cloudcontrol/powerdns-operators -d . --version=$CCTAG --untar

Deploy the operator
helm install $HELM_RELEASE ./powerdns-operators --namespace $CCOPS_NAMESPACE

As a result there should be a Postgres Operator running in the ‘ccops’ namespace. We can thendeploy ZoneControl:
generic.yaml:
registrySecrets:
registry: registry.open-xchange.com

(continues on next page)

25

OX PowerDNS Cloud ControlOverview

(continued from previous page)
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

zonecontrols.yaml:
zonecontrols:
myzonecontrol:
replicas: 2
postgres:
operator: true

authEndpoints:
- name: auth1
url: https://auth1.example.com
key: "apiKeyForAuth1"

- name: auth2
url: https://auth1.example.com
key: "apiKeyForAuth2"

The above example assumes there are 2 deployments of Auth, named ‘auth1’ and ‘auth2’, withthe Auth API endpoints accessible via the corresponding url and key. For more configurationoptions you can refer to the reference guide.
You can deploy these as follows:
The namespace
ZC_NAMESPACE=zonecontrol

Helm release name
HELM_RELEASE=ccdemo

helm install $HELM_RELEASE ./powerdns --namespace $ZC_NAMESPACE \
--values=./generic.yaml --values=./zonecontrols.yaml

Note: In the above example we deploy ZoneControl in a dedicated namespace ‘zonecontrol’.Whilst not strictly necessary, it is generally advisable to deploy ZoneControl in a dedicatednamespace to keep the management & delivery functions of CloudControl separated.

26

OX PowerDNS Cloud ControlOverview

5 Advanced Examples
5.1 DNSdist: DoH
To deploy a set of DNSdist instances with DoH enabled, include a ‘doh’ configuration node inthe dnsdist instance. The example below shows a basic DoH-enabled deployment of a set ofDNSdist instances with Recursors:
dnsdists:
mydohdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

doh:
- name: mydoh

certificates:
- key: |-

-----BEGIN RSA PRIVATE KEY-----
<< CONTENTS OF PRIVATE KEY HERE>>
-----END RSA PRIVATE KEY-----

cert: |-
-----BEGIN CERTIFICATE-----
<< CONTENTS OF CERTIFICATE HERE>>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<< CONTENTS OF ANY INTERMEDIATE CERTIFICATE(S) HERE>>
-----END CERTIFICATE-----

recursors:
myrecursor:
replicas: 2

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

Note: Make sure to replace the contents of the ‘key’ and ‘cert’ with the data of a valid pair.
27

OX PowerDNS Cloud ControlOverview

The above will result in a DNSdist deployment with the regular ‘dnsdist-mydohdist’ Service cre-ated, plus an additional Service named ‘dnsdist-mydohdist-doh-mydoh’. This additional Servicewill have (by default) an inbound listener for traffic over port ‘443’.
You can refer to the ‘Reference’ guide for all available options to configure DoH. Options avail-able include the configuration of STEK tickets (enabled & rotated by default) and loading certifi-cates from pre-existing TLS Secrets to leverage a certificate manager such as certmanager.

5.2 DNSdist: DoT
To deploy a set of DNSdist instances with DoT enabled, include a ‘dot’ configuration node inthe dnsdist instance. The example below shows a basic DoT-enabled deployment of a set ofDNSdist instances with Recursors:
dnsdists:
mydotdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

dot:
- name: mydot

certificates:
- key: |-

-----BEGIN RSA PRIVATE KEY-----
<< CONTENTS OF PRIVATE KEY HERE>>
-----END RSA PRIVATE KEY-----

cert: |-
-----BEGIN CERTIFICATE-----
<< CONTENTS OF CERTIFICATE HERE>>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<< CONTENTS OF ANY INTERMEDIATE CERTIFICATE(S) HERE>>
-----END CERTIFICATE-----

recursors:
myrecursor:
replicas: 2

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

Note: Make sure to replace the contents of the ‘key’ and ‘cert’ with the data of a valid pair.
The above will result in a DNSdist deployment with the regular ‘dnsdist-mydotdist’ Service cre-ated, plus an additional Service named ‘dnsdist-mydotdist-dot-mydot’. This additional Service

28

OX PowerDNS Cloud ControlOverview

will have (by default) an inbound listener for traffic over port ‘853’.
You can refer to the ‘Reference’ guide for all available options to configure DoT. Options avail-able include the configuration of STEK tickets (enabled & rotated by default) and loading certifi-cates from pre-existing TLS Secrets to leverage a certificate manager such as certmanager.

5.3 DNSdist: Co-hosted Recursor
To deploy a set of DNSdist instances with co-hosted Recursor instances, include a ‘recursor’configuration node in the dnsdist instance. The example below shows an example of DNSdistinstances with co-hosted Recursors:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

packetcache:
maxEntries: 200000

recursor:
replicas: 2

registrySecrets:
registry: registry.open-xchange.com
username: REGISTRY_USERNAME_HERE
password: REGISTRY_PASSWORD_HERE
email: admin@registry.open-xchange.com

ipFamily:
ipv4: true
ipv6: false
families:
- "IPv4"
- "IPv6"

The above will result in a DNSdist deployment where each DNSdist Pod also contains 2 Recursorcontainers (+ a Recursor agent container to keep the Recursors synchronised)

5.4 DNSdist: Lua script
To deploy a set of DNSdist instances with custom Lua script included, include a luaScript config-uration node in the dnsdist instance. The example below shows a basic deployment of a set ofDNSdist instances with Recursors and a dynamic rule which will answer refused for 60 secondsif they are measured to be generating > 5 QPS on queries with type ANY :
dnsdists:
mydnsdist:
luaScript: |-
function maintenance()

addDynBlocks(exceedQTypeRate(DNSQType.ANY, 5, 10), "Exceeded ANY rate", 60)
end

setDynBlocksAction(DNSAction.Refused)
replicas: 2

(continues on next page)

29

OX PowerDNS Cloud ControlOverview

(continued from previous page)
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

recursors:
myrecursor:
replicas: 2

For more information on the capabilities of Lua scripting you can refer to the product docu-mentation at: https://dnsdist.org/

5.4.1 Lua script from file
Helm also allows injecting the contents of a separate file into a configuration node in the helminstall & helm upgrade commands. This has several benefits, including not having to indent itinside your main YAML file.
For example, if you have a directory with these 2 files:
overrides.yaml:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

packetcache:
maxEntries: 200000

recursors:
myrecursor:
replicas: 2

script.lua:
function maintenance()
addDynBlocks(exceedQTypeRate(DNSQType.ANY, 5, 10), "Exceeded ANY rate", 60)

end

setDynBlocksAction(DNSAction.Refused)

Then you could inject the Lua script as follows (dnsdists.mydnsdist.luaScript is the path to theluaScript node for the dnsdist instance namedmydnsdist):
helm install myrelease ./powerdns --namespace mynamespace \

--values overrides.yaml --set-file dnsdists.mydnsdist.luaScript=script.lua

Note: This method assumes overrides.yaml and script.lua are in the same directory

30

https://dnsdist.org/

OX PowerDNS Cloud ControlOverview

5.5 Recursor: Lua script & config
To deploy a set of Recursor instances with custom Lua script and/or Lua config included, includea luaScript and/or luaConfig` configuration node in the Recursor instance. The example belowshows a basic deployment of a set of Recursors instances with both a Lua script and configincluded:
recursors:
myrecursor:
replicas: 2
luaScript: |-
function preresolve(dq)

if dq.qname:equal("somerecord.example.com") then
dq.rcode = 5
return true

end
return false

end
luaConfig: |-

addAllowedAdditionalQType(pdns.MX, {pdns.A, pdns.AAAA})

For more information on the capabilities of Lua scripting and Lua configuration you can referto the product documentation at: https://doc.powerdns.com/recursor/

5.5.1 Lua script and config from file
Helm also allows injecting the contents of a separate file into a configuration node in the helminstall & helm upgrade commands. This has several benefits, including not having to indent itinside your main YAML file.
For example, if you have a directory with these 3 files:
overrides.yaml:
recursors:
myrecursor:
replicas: 2

script.lua:
function preresolve(dq)
if dq.qname:equal("somerecord.example.com") then
dq.rcode = 5
return true

end
return false

end

lua.config:
addAllowedAdditionalQType(pdns.MX, {pdns.A, pdns.AAAA})

Then you could inject the Lua script as follows (recursors.myrecursor.luaScript is the path to theluaScript node for the recursor instance namedmyrecursor):

31

https://doc.powerdns.com/recursor/

OX PowerDNS Cloud ControlOverview

helm install myrelease ./powerdns --namespace mynamespace \
--values overrides.yaml \
--set-file recursors.myrecursor.luaScript=script.lua \
--set-file recursors.myrecursor.luaConfig=lua.config \

Note: This method assumes overrides.yaml, script.lua and lua.config are in the same directory

5.6 Multi-homed pods
Container network interface (CNI) plugins such as Multus CNI allow you to attach multiple net-work interfaces to pods (ie: multi-homed pods). Without multi-homed pods, you are limited tothe pod network (indicated by eth0 interfaces) as shown in the below diagram:

You can see this dnsdist + recursor example has the following traffic flows:
• dnsdist inbound from users: eth0
• dnsdist outbound to recursor: eth0
• recursor inbound from dnsdist: eth0
• recursor outbound to internet: eth0

Whether or not your Kubernetes cluster can accomodate for all the above traffic flows over thepod network depends on many factors and often the last flow (recursor outbound to internet)presents a problem. For this purpose using a multi-homed Recursor pod is a good alternative.An example of how this can be used:

32

OX PowerDNS Cloud ControlOverview

Now the example has the following traffic flows:
• dnsdist inbound from users: eth0
• dnsdist outbound to recursor: eth0
• recursor inbound from dnsdist: eth0
• recursor outbound to internet: net1 (the additional interface)

5.6.1 Configuring multi-homed Recursor pods
Making a Recursor pod multi-homed is a simple task, since this only involves adding an anno-tation to the pods. Your CNI plugin should take care of the rest.
For example using the Multus CNI plugin we can attach a Network named testnetv4 which isdefined in namespace kube-system:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

recursors:
myrecursor:
podAnnotations:
k8s.v1.cni.cncf.io/networks: '[{

"name": "testnetv4",
"namespace": "kube-system"

}]'
replicas: 2

This results in the following setup (your additional nic might have a different name):

By default, the Recursor will now be able to:
• Receive traffic from the pod network over eth0
• Receive traffic from the additional network over net1
• Send traffic to the pod network over eth0
• Send traffic to the additional network over net1

33

OX PowerDNS Cloud ControlOverview

In the above example where we want Recursor to communicate to the internet to reach name-servers, it might not be desirable to allow inbound traffic from the internet to reach the Re-cursor pod. How to handle that situation is specific to the larger architecture/infrastructure inwhich the Kubernetes cluster resides, but if it is desirable then it is possible to stop Recursorfrom listening to the additional interface. An example which shows how to configure this:
dnsdists:
mydnsdist:
replicas: 2
pools:
default:

serverGroups:
- group: myrecursor

recursors:
myrecursor:
podAnnotations:
k8s.v1.cni.cncf.io/networks: '[{

"name": "testnetv4",
"namespace": "kube-system"

}]'
replicas: 2
inboundInterfaces:
- eth0

metricsInterfaces:
- eth0

outboundInterfaces:
- net1

readiness:
bindInterfaces:

- "eth0"

In the above deployment we ignore all the defaults and override each inbound & outboundtraffic flow to utilize a specific interface:
• Inbound traffic to Recursor: eth0 (pod network)
• Inbound traffic to metrics aggregator: eth0 (pod network)
• Inbound traffic to readiness probe: eth0 (pod network)
• Outbound traffic from Recursor to nameservers: net1 (additional interface)

5.6.2 Configuring multi-homed DNSdist with co-hosted Recursor pods
Similar to above, making a dnsdist + co-hosted recursor pod requires the addition of an anno-tation:
dnsdists:
mydnsdist:
podAnnotations:
k8s.v1.cni.cncf.io/networks: '[{

"name": "testnetv4",
"namespace": "kube-system"

}]'
replicas: 2

(continues on next page)

34

OX PowerDNS Cloud ControlOverview

(continued from previous page)
recursor:
replicas: 2

This results in dnsdist pods as follows (your additional nic might have a different name):

The defaults for this scenario are slightly different, since Recursor is embedded within the Dns-dist pod. The enabled traffic flows are:
• Dnsdist: Receive traffic from the pod network over eth0
• Dnsdist: Send traffic via loopback to embedded Recursor containers
• Recursor: Receive traffic via loopback from Dnsdist
• Recursor: Send traffic to the pod network over eth0
• Recursor: Send traffic to the additional network over net1

And the utility traffic flows:
• Inbound traffic to Dnsdist readiness: eth0 (pod network)
• Inbound traffic to Recursor readiness: eth0 (pod network) & net1 (additional interface)
• Inbound traffic to metrics aggregator: eth0 (pod network)

Suppose we want to implement a common scenario, where all inbound traffic is limited the thepod network, while recursor’s outbound traffic uses the additional interface. Then we wouldwant the following traffic flows:
• Dnsdist: Receive traffic over pod network: eth0
• Recursor: Send traffic to nameservers over additional network: net1
• Utilities: Receive traffic over pod network: eth0

The above deployment can be finetuned as follows to accomodate this scenario:
dnsdists:
mydnsdist:
podAnnotations:
k8s.v1.cni.cncf.io/networks: '[{

"name": "testnetv4",
"namespace": "kube-system"

}]'
replicas: 2
recursor:

(continues on next page)

35

OX PowerDNS Cloud ControlOverview

(continued from previous page)
replicas: 2
outboundInterfaces:

- net1
readiness:

bindInterfaces:
- "eth0"

36

OX PowerDNS Cloud ControlOverview

6 Troubleshooting
6.1 Accessing DNSdist console
DNSdist offers a commandline console which allows for debugging of issues and retrievingstatistics. In Cloud Control deployments this is enabled by default and can be accessed viakubectl’s exec command. This chapter will show how to gain access to the console and a fewsample commands. For full documentation on the DNSdist console you can refer to: DNSdistreference guide
Note: While DNSdist’s console exposes methods to modify a running instance we highly en-courage users NOT to do this. Any change made to a running instance using the console willnot persist and will not be synchronized to other DNSdist instances.
The following command can be used to gain access to the console:
Pod name (make sure to replace with an existing DNSdist pod's name)
POD=mydnsdist-775cbf55d9-qjtks

The namespace
CC_NAMESPACE=my-namespace

Kubectl command to access the DNSdist console
kubectl exec -it $POD --namespace=$CC_NAMESPACE -c dnsdist -- dnsdist -c \
--config=/config/dnsdist.conf

You should then be presented with a console session as follows:
* dnsdist-state loaded
* Control socket set to 127.0.0.1:5199 with provided key
>

To see the status of the recursor and/or resolver instances that DNSdist will send queries touse showServers():
> showServers()
Name Address State Qps Ord Wt Queries Pools
0 Endpoints/my-namespa 10.244.1.7:5353 up 0.0 1 1 546
1 Endpoints/my-namespa 10.244.1.8:5353 up 0.0 1 1 0
2 Endpoints/my-namespa 10.244.1.9:5353 up 0.0 1 1 0
3 Endpoints/my-namespa 149.112.112.112:53 up 0.0 1 1 0 external
4 Endpoints/my-namespa 9.9.9.9:53 up 0.0 1 1 0 external
All 0.0 546

37

https://dnsdist.org/guides/console.html
https://dnsdist.org/guides/console.html

OX PowerDNS Cloud ControlOverview

Show the pools using showPools():
> showPools()
Name Cache ServerPolicy Servers

leastOutstanding 10.244.1.7:5353, 10.244.1.8:5353, 10.244.1.9:5353
external leastOutstanding 149.112.112.112:53, 9.9.9.9:53

List all rules with showRules():
> showRules()
Name Matches Rule Action
0 0 qtype==ANY set rcode 5
1 0 qtype==AAAA to pool external

6.2 Pod Events
Cloud Control pods, primarily DNSdist, emit events to indicate potential problematic behaviourand provide tracability into the synchronisation processes.
There are many ways to list events in a namespace, for a pod, etc.. In the below example we’lluse kubectl’s get event to show the events for a specific pod, but in a production setting werecommend capturing these in your logging/monitoring infrastructure.
Pod name (make sure to replace with an existing DNSdist pod's name)
POD=mydnsdist-775cbf55d9-qjtks

The namespace
CC_NAMESPACE=my-namespace

Kubectl command to list recent events emitted by a pod in a given namespace
kubectl get event --namespace=$CC_NAMESPACE --field-selector involvedObject.name=$POD

Examples of events generated by DNSdist pods (reformatted to fit):
Event emitted by agent when a rule is updated
Type: Normal
Reason: DNSDistRuleUpdated
Object: pod/mydnsdist-775cbf55d9-gvjwk
Message: DNSDistRule 'my-namespace/block-traffic-ruleset' has been synchronised

Event emitted by agent when a recursor/resolver endpoint changes
Type: Normal
Reason: EndpointsUpdated
Object: pod/mydnsdist-775cbf55d9-gvjwk
Message: Endpoints 'my-namespace/recursor-myrecursor' has been synchronised

Event emitted by Kubernetes when a readiness probe fails
Type: Warning
Reason: Unhealthy
Object: pod/mydnsdist-775cbf55d9-gvjwk
Message: Readiness probe failed: HTTP probe failed with statuscode: 500

38

	Cloud Control
	Simple deployment - Recursor
	Simple deployment - Auth
	Complex deployment
	Rules & Actions
	DNSdist with co-hosted Recursors
	DNSdist with DoH and/or DoT listeners
	ZoneControl deployment

	Cloud Control on Kubernetes
	Auth
	Auth agent

	DNSdist
	DNSdist agent

	Recursor
	Recursor agent

	Resolver
	Ruleset
	ZoneControl
	ZoneControl Syncer

	Helm Charts
	Helm Chart: powerdns-crds
	Helm Chart: powerdns
	Helm Chart: powerdns-operators

	Getting Started
	Install Tools
	Download Helm Charts
	Install/Upgrade CloudControl CRDs
	Install/Upgrade CloudControl
	Registry Credentials
	Cluster Networking
	Deploying Recursor
	Adding DNSdist
	Adding an external Resolver
	Adding a DNSdist rule
	Using DNSdist rules to route traffic
	Separating config into multiple files
	Exposing dnsdist
	Deploying ZoneControl

	Advanced Examples
	DNSdist: DoH
	DNSdist: DoT
	DNSdist: Co-hosted Recursor
	DNSdist: Lua script
	Lua script from file

	Recursor: Lua script & config
	Lua script and config from file

	Multi-homed pods
	Configuring multi-homed Recursor pods
	Configuring multi-homed DNSdist with co-hosted Recursor pods

	Troubleshooting
	Accessing DNSdist console
	Pod Events

