
Open-Xchange™ Whitepaper

Open-Xchange Server 6

Architecture Overview

v1.3

Author: Stephan Martin

Editors: Dave Goldberg

Contents

 1.Introduction..3

 2.Design Goals...4

 2.1. Scalability..4
 2.2. Multi Tenant / Multi Domain..5
 2.3. Integration...5
 2.4. Data Center..6

 3.Architecture Overview...7

 3.1. OSGi-Support...9

 4.Architecture Details...10

 4.1. Scalability..10
 4.1.1. Deployment Flexibility...10
 4.1.2. Scalability concepts definition...11
 4.1.3. “Scale Up” or “Vertical Scaling”...12
 4.1.4. “Scale Out” or “Horizontal Scaling”..14
 4.1.4.1 Open-Xchange Application...14
 4.1.4.2 Back End Services..14
 4.2. Multi Tenant / Multi Domain..17
 4.3. Integration...18
 4.4. Data Center Integration...20
 4.4.1. Cluster Manageability..21
 4.4.2. Monitoring...22

 5.Frontend Customization..23

 5.1. Themeability...23
 5.2. Plug-in Concept for the User Interface ...23
 5.3. UWA-Support..23

 6.Open-Xchange Interfaces..24

 6.1. Groupware Data Functions – Java Script Object Notation............................24
 6.2. Groupware Data Synchronization – OXDAV – WebDAV/XML........................25
 6.3. Provisioning – Remote Method Invocation (RMI)/SOAP...............................25
 6.3.1. Synchronization from LDAP/ADS...26
 6.4. System Administration Interfaces..26
 6.4.1. Monitoring – Java Management Extensions...26
 6.4.2. Administration – Command-line Tools..27

© Copyright 2008, Open-Xchange GmbH - 2 -

 1. Introduction

Open-Xchange Server 6 is the most advanced Linux based Groupware solution f.

Open-Xchange Server 6 is superior in the following areas:

• Open-Xchange Server 6 offers most comprehensive Groupware
functionality based on modern user interface technologies and includes
email, calendaring, contact management, intelligent document sharing,
“smart linking” and much more.

• The architecture is designed for deployment in the hosted market.

• The architecture is designed for enterprises market

This document focuses on the later topic and describes the design goals of Open-
Xchange Server 6 with regard to deployment in large scale, integrated, hosted-
and enterprise environments.

© Copyright 2008, Open-Xchange GmbH - 3 -

 2. Design Goals

Open-Xchange Server 6 was designed especially to fulfill the following
requirements each of which is crucial for deployment in integrated hosting and
enterprise infrastructures:

1. Scalability to millions of users

2. Multi Tenant / Multi Domain capabilities to serve hundreds of thousands
small customers with one large data center

3. Integration into existing hosting infrastructure and services to leverage
existing services and to integrate in the hosting company's business
processes

4. Integration into enterprise environments

5. Offer the necessary services and interfaces to integrate into an existing
data center for automated administration, deployment and monitoring
with 24/7 uptime 365 days a year

Figure 1: Open-Xchange - Design Goals

 2.1. Scalability

Ultimately everything described in this document relates to scalability. Scalability
has many different faces including serving hundreds of thousands of concurrent

© Copyright 2008, Open-Xchange GmbH - 4 -

users, efficiency of the overall deployment, reuse of existing services, resources
needed for administration, and much more.

Open-Xchange Server 6 is designed to serve several hundreds of thousands of
customers each with many individual user accounts. In very large environments,
this leads to millions of users in a single installation.

To scale to these numbers, Open-Xchange Server 6 makes use of two modern
scalability concepts, “Scale Up” and “Scale Out”, both of which are described in
more detail later.

 2.2. Multi Tenant / Multi Domain

To meet the scalability requirements mentioned above it is necessary to make
efficient use of the available hardware resources.

To meet high volume scalability requirements posed by the SaaS model and
enterprise environments, one might be inclined to place each customer on their
own dedicated server. However, this would lead to a huge waste of resources as
many of the processes in each dedicated server would do the the same work as
other processes in other servers. In general, dedicated servers and virtualization
is not an efficient scaling technique for many small customers as is encountered
in the SaaS model.

What is needed to solve this problem is the called Multi Tenant / Multi Domain
capability. This allows many customers to access exactly the same service
without seeing the existence of other customers in the same process. Every
customers experience is as if they were the only customer using this service. This
allows for the most efficient usage of hardware resources as the application
takes care of the separation between the customers environments. Each end user
can only see the users, objects and resources from within their own customer
environment. Such an virtual environment is called a context throughout this
document.

 2.3. Integration

Another crucial topic with regard to scalability is the ability to leverage existing
services. Although not a technical requirement of the software, the ability to re-
use existing services reduces project scope, improves business processes and
increases infrastructure efficiency. Any IT person who has implemented large
scale environments knows that it is not efficient to reinvent or replace existing
systems which already perform their task well and are designed specifically for
the environment they run in.

© Copyright 2008, Open-Xchange GmbH - 5 -

The operation and deployment of Open-Xchange Server 6 is based on the ability
to leverage existing services and processes in the background.

These services can be thought of in two distinct areas: customer facing services,
like Email and business process related services like HR-Software. It is important
for Open-Xchange to work smoothly with existing services rather then require
them to be replaced.

Open-Xchange focuses on its core competency which is providing large scale
groupware applications. All other services necessary to run Open-Xchange Server
6 can be integrated smoothly from the hosting or enterprise environment through
the many available open and documented interfaces provided by Open-Xchange.
There is no need to perform costly replacements of existing systems to utilize the
groupware functions of Open-Xchange Server 6.

 2.4. Data Center

Another important part of scalability is the ability to operate all the services in a
very efficient manner allowing 24/7 operation with as small a staff as possible.

Open-Xchange Server 6 offers everything a modern enterprise solution needs to
be integrated into existing administration, deployment and monitoring
frameworks.

© Copyright 2008, Open-Xchange GmbH - 6 -

 3. Architecture Overview

This chapter gives a more detailed view of the Open-Xchange Server 6
architecture. It dives deeper into the different Open-Xchange Server components
and dependencies and how they work together

The following diagram shows the components in a typical Open-Xchange Server
environment.

Figure 2: Open-Xchange - Simplified Architecture
Overview

Open-Xchange includes the user front ends (AJAX based web front and rich client
connectors) and all application logic. There are other additional services which
are necessary for the operation of an Open-Xchange Server. Therefor an
integrated approach is used to leverage a number of Linux services and
frameworks. A running Open-Xchange environmental therefore includes both
Open-Xchange components and components delivered from other 3rd party
vendors.

Tracing how a user request is handled helps to understand all the components
and how they interact together:

1. The user request is generated through a front end application.

© Copyright 2008, Open-Xchange GmbH - 7 -

• This is either an Internet browser running the Open-Xchange AJAX
Graphical User Interface (GUI)

or

• Microsoft Outlook© with the Open-Xchange OXtender for Microsoft
Outlook© Plug-In.

2. The request is sent over the Internet (via HTTP or HTTPS) to an apache
server. The apache server handles all Internet communication including
request information, encryption, transmission errors and other low level
processing details.
See: http://www.apache.org/

3. Within apache, a module called mod_proxy_ajp is loaded and used to
forward the request to the Open-Xchange application via the AJPv13
protocol. The primary task of mod_proxy_ajp is to ensure session stability
when a cluster of Open-Xchange Server 6 is used. mod_proxy_ajp is part
of the popular Jakarta project.

See: http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

and: http://tomcat.apache.org/connectors-doc/

4. The core of the system is the Open-Xchange application server itself. All
requests are handled, interpreted and fulfilled from this process running
on a Linux server. The Open-Xchange Server 6 is written in JAVA and is
running as an independent service. It is not embedded in a J2EE
application server an thus avoids the overhead associated with those
types of applications.

5. All data which is stored (appointments, contacts, documents, user
configuration, authentication data, Emails, ...) is stored in back-end
services which are designed specifically to store this type of data.
In the Open-Xchange Server 6 there are three types of stored data and
corresponding services:

• All user data such as appointments or contacts is stored in a SQL
database along with information about user authentication and
company data.
Open-Xchange Server 6 is based on the most popular open source
database, MySQL. However, other SQL databases can be adapted for
data storage.
See: http://www.mysql.com/

© Copyright 2008, Open-Xchange GmbH - 8 -

http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html
http://www.mysql.com/
http://tomcat.apache.org/connectors-doc/

• All documents are stored directly in the file system to avoid abusing
the database systems to store large amounts of binary data. Only the
meta data related to documents is stored in the database.

• All Emails are stored, read, and sent through standard Email services
based on the standard Internet protocols IMAP and SMTP. Any IMAP
and SMTP capable Email service can be integrated.

 3.1. OSGi-Support

The framework implements a dynamic component model. Applications or
components can be installed remotely, started, stopped, updated, and un-
installed without requiring a reboot. This gives development and the hoster a
more flexible working behavior. In addition, the Open-Xchange platform can
easily be enhanced on top of the OSGi standard with own modules and features.
There are several build-in modules which can be replaced with individual methods
or even platform specific features:

– Authentication module

– Config-Jump

– Individual Servlets

– Mail Filter

– Spam Handler

– Mail Abstraction Layer

© Copyright 2008, Open-Xchange GmbH - 9 -

 4. Architecture Details

This chapter focuses in detail on the topics mentioned above.

Each topic is discussed in detail below with the goal of achieving maximum
scalability by efficient operation, not solely focusing on performance related
topics.

 4.1. Scalability

Scalability in a purely technical domain is related directly to the term
“performance”.
Thus we need to define “performance”:

Performance in an Open-Xchange environment is measured by two important
statistics:

1. The number of concurrent user session which are served by one complete
clustered installation or by one single server

2. The number of user requests which are answered by one complete
clustered installation or by one single server in a given time frame

Understanding how performance is maximized within Open-Xchange Server 6 one
begins to understand how the server scales to handle increased load.

 4.1.1. Deployment Flexibility

Initially a systems setup is designed and sized based on assumptions. In a
production environment it is common that the original assumptions were
incorrect or become invalid with time.

This problem is common with undersizing as well as oversizing. For example, the
server load could end up much lower than expected due to customers moving
away from the service over the time. In this case the setup may waste expensive
hardware resources. On the other hand, it is possible that the load becomes
higher than expected due to a large percentage of power users. In that case it is
necessary to lower the load on the relevant subsystems to keep those machines
responsive for all users.

Both cases outline the fact that flexibility with regard to deployment is an
important part of any architecture.

Open-Xchange Server 6 can adapt the deployment to the real world situation in a
flexible and transparent manner whenever it is called for. At any time it is
possible to improve the configuration based on the real world operation.

© Copyright 2008, Open-Xchange GmbH - 10 -

 4.1.2. Scalability concepts definition

As described above the Open-Xchange Server 6 is designed to allow maximum
efficiency through both flavors of scalability to increase the overall performance:

• “Scale Up”, also called “Vertical Scalability”

• “Scale Out”, also called “Horizontal Scalability”

Figure 3: Open-Xchange - Scalability
Concepts

“Scale Up” or “Vertical Scaling” means, adding more hardware resources (CPU,
RAM, I/O, ...) to one machine to deliver more performance.

Obviously there are limits for this kind of scalability as it is not possible to
achieve unlimited scalability through using better hardware. This is primarily
because CPU and RAM are not the only factors which limit scalability.
Additionally, continually buying bigger and better hardware is quite expensive
and does not take advantage of the existing investment.

When this point is reached the other concept needs to be applied: “Scale Out” or
“Horizontal Scaling”.

“Scale Out” or “Horizontal Scaling” means that the performance of the overall
system is increased by adding more machines to the system (clustering, service
separation). With this concept it is possible to theoretically achieve “unlimited”
scalability.

For a truly robust, scalable solution both concepts need to be properly supported.
If the application is not designed properly, it does no good to add more CPUs or
RAM into the server. Likewise a poorly designed architecture will not benefit from
adding more machines to increase overall performance.

© Copyright 2008, Open-Xchange GmbH - 11 -

Open-Xchange Server 6 makes use of both concepts to allow maximum scalability
through a superior service architecture.

 4.1.3. “Scale Up” or “Vertical Scaling”

To allow maximum scalability with a single machine it is important to design an
application to utilize the existing hardware resources as efficiently as possible and
not to waste any resources.

There are several concepts implemented in Open-Xchange Server 6 which lead to
efficient scalability on one single machine.

All of the following contribute to help scalability and each has been carefully
adopted by Open-Xchange Server 6:

• Reduce the computing power to fulfill a special task

• Reduce the memory usage of the application

• Reduce all requests between components (internal components, external
services)

• Reduce unnecessary tasks all together

The above mechanisms are accomplished via the following technologies:

• AJAX Frontend
Unlike the classical web applications, the user interface is not generated
by the server. AJAX technology allows rendering the complete front end,
written in Java-Script, directly within the users browser. Only data objects
are exchanged between the application running in the browser and the
server. The data objects are transferred using a format called Java-Script
Object Notation (JSON) to reduce the parsing effort in the browser to a
bare minimum.
See also: http://www.json.org/
This new concept reduces the load on the server dramatically when
compared to classical web applications where all the rendering work and
the generation of the HTML code is done on the server.

• Database Connection Pooling
Another potential bottleneck and potential waste of resources is the
handling of database connections. Large numbers of user requests require
large numbers of database requests to the back end database server.
Open-Xchange Server 6 makes use of a very efficient database connection
pooling mechanism to allow efficient reuse of existing connections to the
database server and to reduce the overhead of handling these connections
in the JDBC driver (CPU, RAM).

© Copyright 2008, Open-Xchange GmbH - 12 -

• Efficient Caching
Another scheme of optimizing the use of data is the caching of frequently
used data structures from the database.
Open-Xchange Server 6 leverages the database's internal caching
mechanisms through “caching ready” Open-Xchange JAVA objects. This
translates to a tremendous reduction in the load on the server because
often accessed data structures, like permission sets, are cached internally
as Open-Xchange objects. This reduces not only the database accesses,
but also the interpretation of the raw database data into Open-Xchange
objects. The caching is based on the Java Caching System (JCS) from the
Jakarta project. To allow the caching to work efficient in a clustered
environment Open-Xchange uses cache invalidation technology
implemented in JCS.
See also: http://jakarta.apache.org/jcs/

• Trigger/Push Mechanisms
Asynchronous connected front ends like the OXtender for Microsoft
Outlook© need to keep their data in sync with the data of other users. To
achieve this it is necessary to reload the data from the server regularly.
Having many Outlook© clients polling in regular time frames can create a
very high load on the server even if no data has changed.
To avoid this regular polling an event trigger mechanism is introduced
which triggers a push from the client to the server only when an object is
modified on the server.
This mechanism reduces server and network load tremendously as the
server only uses computing power if there is actually some data to
synchronize.

• IMAP Caching
IMAP operations on the IMAP back end server are typical bottlenecks in
webmail implementations. This is reduced to a minimum by Open-
Xchange through caching the most important data from the IMAP mailbox.
For every mailbox there is only one single request to read the content.
This information is cached in Open-Xchange. The user will always see his
list of emails without the need to reload the information from the server.
Updates to this list are done in background without interrupting the work
of the user.

 4.1.4. “Scale Out” or “Horizontal Scaling”

“Horizontal Scaling” is implemented at two different architecture levels:

• The Open-Xchange application level

• The back-end services level

© Copyright 2008, Open-Xchange GmbH - 13 -

http://jakarta.apache.org/jcs/

 4 .1 .4 .1 Open-Xchange Application

The application itself is cluster capable. This allows the distribution of the
computing load of the Open-Xchange application to many servers running in
parallel. There is no limit to how many servers are used in parallel and the cluster
can be enhanced and extended transparently and easily.

 4 .1 .4 .2 Back End Services

The vertical scalability of the back-end services is a little trickier. The database
back-end services can easy become a performance bottleneck because of the
physical limits of the database machines. Also the size of the data within each
database and table can result in large amounts of data being stored slowing
down performance. Methods to minimize these problems are outlined below.

4.1.4.2.1. Read-Write Separation

One trivial but nevertheless very efficient way to enhance the database back-
ends scalability is to separate write access to the database from the read access.
The Open-Xchange application uses a disproportionate number of read operations
when compared to write access. To account for the large number of read
operations one or more dedicated read-only databases are created which mirror
the data in the “master” write database. Access to the read databases (aka
slaves) is balanced with load balancing mechanisms helping to improve both read
and write times

Figure 4: Open-Xchange - Read-Write Separation

© Copyright 2008, Open-Xchange GmbH - 14 -

Separation of read/write operations allows the installation of the database system
in a cluster, with one master and many slaves. The databases use internal
replication mechanisms to ensure that all slaves contain the same content as the
master database.

All read accesses is sent to the slaves allowing a single database to scale to many
more customers and users than a single database handling all read and write
operations.

The combination of one master and several slaves containing the same data is
called database cluster throughout the following chapters.

4.1.4.2.2. Physical Database Partitioning

Even with the read/write separation described above the size of the content in
one database will become a limiting factor for the installation when the numbers
of customers and users grow extremely large.

To ensure, that the size of a single database server does not grow too large and
stays below a pre-defined size, Open-Xchange Server 6 is able to work with a
partitioned database setup.

Figure 5: Open-Xchange - Physical Database
Partitioning

Physical partitioning means nothing more than distributing the customer data to
different database servers/clusters. For example, all data for the first ten
thousand customers is stored on database cluster 1 and all data from the second
ten thousand customers is stored on database cluster 2.

© Copyright 2008, Open-Xchange GmbH - 15 -

Additionally, there is a single central database, called “Config-DB”, which keeps
the meta information of which database cluster contains which customer data.
This information is only accessed once during customer login so the Config-DB
should not effect scalability of the whole system.

As a result of this architecture, administrators are able to regulate the load on
each of the database clusters. Monitoring the load during production provides
information on the best way to distribute the customers data into database
clusters.

4.1.4.2.3. Logical Database Partitioning

The physical database partitioning described above can be enhanced further into
logical database partitioning with Open-Xchange Server 6.

This is useful when the database cluster is able to handle the number of requests
but the performance is limited by the size of the database tables. The more a
database table grows, the slower the results for each request.

Figure 6: Open-Xchange - Logical Database
Partitioning

With this setup it is possible to run several completely separate databases within
one database cluster. This allows the same separation of customers into several
databases like the physical partitioning except multiple databases run on the
same database cluster.

This capability adds yet another level of flexibility to the architecture of Open-
Xchange Server 6.

© Copyright 2008, Open-Xchange GmbH - 16 -

 4.2. Multi Tenant / Multi Domain

As described above the Open-Xchange Server 6 can serve many completely
separate customer environments within one instance of the Open-Xchange
application to efficiently use the existing hardware resources.

Figure 7: Open-Xchange -
Multi Tenant / Multi Domain

Within the context of one customer, only the data for that single customer is
available. It is not possible for one user to accidentally or intentionally circumvent
this protection and to access data from another customer.

All users within one context work as if they are on a single server dedicated to
their installation.

The local data for one context includes everything necessary for the companies to
collaborate exactly as if they are running on a dedicated server.

 This includes:

• User Administration and Authentication

• Domain Administration and Authentication

• Group Administration

• Resource Administration

• All User Data such as Appointments, Tasks, Contacts, ...

© Copyright 2008, Open-Xchange GmbH - 17 -

 4.3. Integration

Open-Xchange Server 6 is designed to integrate into the existing infrastructure of
a hosting provider. Existing services are reused wherever possible.

This is not just limited to integration in the network infrastructure but also
applies to business related services like the HR-Software and more.

These integration capabilities adhere to a service oriented approach and are
focused on the integration of several different services.

Figure 8: Open-Xchange - Integration

The integration points of note include:

• HR-Software
Existing processes for user deployment and HR-Software will be
transparently integrated with the administration framework from Open-
Xchange. Integration is based on the standard Java protocol/interface
called Remote Method Invocation (RMI) and allows the complete
administration of contexts, users, groups and resources.
When a customer buys the Open-Xchange service, or additional users, the
fulfillment of the request is automated and forwarded to the Open-
Xchange service. All necessary internal actions such as distribution of the
user information between the database clusters will be handled
transparently by Open-Xchange Server 6.

• Email Service
Open-Xchange makes use of the Internet standards IMAP and SMTP. All
Email systems based on these standards can easily be integrated into an
Open-Xchange environment without the need to change anything. This

© Copyright 2008, Open-Xchange GmbH - 18 -

allows Open-Xchange to be added as a value added service on top of
already existing Email offerings.

• Network Infrastructure
Open-Change Server 6 is designed to integrate smoothly in existing
network infrastructures with established systems for load balancing and
more.

• Administration Infrastructure
Open-Xchange Server 6n is designed to integrate into existing
administration infrastructures.
Administrators can automate the deployment and configuration of Open-
Xchange servers. All necessary configuration work can be done remotely,
without physical access to the machines. Command-line tools can easily
be integrated into automated administration processes.

• User Self Service
Usually a hoster has implemented own web frontends for the user self
service. Typically a user can administer his password, vacation notices,
mailfilters and more. Open-Xchange offers the so called “Config-Jump”,
which allows the user to open this web frontends without additional
authentication. To achieve that functionality, a plugin will be
implemented, which creates a session on the web frontend server for this
user.

• Authentication
The authentication process can be implemented as plugin to integrate
flexible into the hosters existing authentication infrastructure. It is
possible to use flexible login names and to integrate already existing
central authentication systems.

 4.4. Data Center Integration

Another important aspect of scalability is the ability to flexibly integrate into
modern data center processes.

This includes several important requirements:

• high availability – necessary to meet the SLAs of hosting providers

• load balancing – must be flexible to allow for different clustering scenarios

• health monitoring - health issues must be reported fast and monitoring
must be reliable to avoid critical situations. Monitoring must also include
relevant performance data for tuning the system.

© Copyright 2008, Open-Xchange GmbH - 19 -

 4.4.1. Cluster Manageability

As described above, Open-Xchange Server 6 is designed to run in a load balanced
cluster. To enhance the manageability in this kind of clustered environment there
are many notable features which allow for easy administration.

The following concepts are implemented in Open-Xchange Server 6 to provide
data center ready operation:

• Failover for High Availability
If one machine breaks down it can be removed from the load balancing
mechanism without the other servers in the cluster being informed or
reconfigured

• Enhancement of the cluster
Clusters have the ability to be enhanced without the interruption of
service. It is possible to add one or more servers transparent to the rest
of the cluster and without changing the local configuration on any of the
servers. The new server only needs to be registered in the central Config-
DB. The same applies for removing one or more machines from the
cluster, for example after introducing more powerful servers into the
cluster.

• Enhancement of Back-End Services
All Back-End services are transparently enhanced or added to the system.
For example, a new database cluster for user data or a new file store for
files can be installed and needs only to be registered in the central Config-
DB. The next new context will automatically be created in this new
database cluster or file spool if appropriate

This flexibility is accomplished through:

© Copyright 2008, Open-Xchange GmbH - 20 -

Figure 9: Open-Xchange -
Data Center

• Identical Configuration
All Open-Xchange application servers are configured the same way. This
allows easy cloning of the installation and is the basis for the actions
described above.

• Stateless Servers
The servers don't rely on any state information from any other servers in
the cluster. When users log in they will be assigned to a dedicated Open-
Xchange application server. From that point in time, all their requests will
be sent to the same server completely independent of the other servers.
mod_proxy_ajp allows for this type of reliable session behavior.

• Multicast Auto-configuration
There are a few subsystems which need to be aware of the operations of
other servers. These include the cache invalidation mechanism for JCS and
the Outlook© push trigger mechanism. Both services communicate with
their partners in the cluster automatically via multi-cast operations. Using
this mechanism it is not necessary to keep hard-coded configuration data
in any configuration files and keeps the architecture dynamic.

 4.4.2. Monitoring

To run a sophisticated system like Open-Xchange, with many servers and many
back end services in a data center, it is mandatory to monitor the health of the
entire application stack.

Open-Xchange Server 6 comes with very detailed monitoring capabilities.
Everything necessary to interpret the state of the application and its
dependencies is monitored.

All the statistics are stored internally and made available via a Java JMX API. This
allows Open-Xchange Server 6 to integrate into most monitoring frameworks.

Additionally all of the monitored information can be exported with command line
tools and integrate into any other monitoring tool which can parse the text.

© Copyright 2008, Open-Xchange GmbH - 21 -

 5. Frontend Customization

 5.1. Themeability

Open-Xchange Server 6 will support theming functionality, so that you will be
able to create own themes and make them available in the configuration frontend
of the Open-Xchange Webinterface. The stylesheet files are modified, so that
everything that should affect the theming functionality can now be configured
within an own theme. Besides also the images can be replaced per theme.

All themes will be stored in the following directory of the Open-Xchange Server: /
var/www/ox6/themes/

 5.2. Plug-in Concept for the User Interface

With Open-Xchange Server 6 it is possible to add you own JavaScript Code for
existing events. The following areas at the user interface will be plug-in-enabled:

– Administration of groups and resources in the user options

– Special “Config jump” to external control centers

– Displaying further option sites for different services or applications

– Using all contact information in the contact module for further 3rd Party
Software

– Activate the SIEVE-Mailfilter functionality at the product

 5.3. UWA-Support

Netvibes UWA is a abbreviation for the Universal Widget API and describes a
standard to make widgets available on every platform such as Netvibes, Apple
Dashboard, Blog Systems and many others. With the Open-Xchange Server 6 it is
possible to embed those widgets to the User Interface. Additional it is possible to
add locally installed UWA Widgets without the connection to NetVibes.

© Copyright 2008, Open-Xchange GmbH - 22 -

http://www.apple.com/downloads/dashboard/
http://www.apple.com/downloads/dashboard/
http://www.netvibes.com/
http://dev.netvibes.com/

 6. Open-Xchange Interfaces

This section describes some of the interfaces offered by Open-Xchange Server 6,
which allow access to the Open-Xchange services and data for external
applications.

Figure 10: Open-Xchange -
Interfaces

 6.1. Groupware Data Functions – Java Script Object Notation

The AJAX web front end communicates with the Open-Xchange Server 6 using
Java Script Object Notation (JSON).This is the preferred interface to access user's
data from external applications

This interface covers all functionality provided by the web front-end including
calendar, contacts, tasks, folder/permission management, conflict handling,
searches and many more.

“JSON” is a lightweight data-interchange format It is easy for humans to read
and write. It is easy for machines to parse and generate. It is based on a subset
of the JavaScript Programming Language. JSON is a text format that is
completely language independent but uses conventions that are familiar to
programmers of the C-family of languages, including C, C++, C#, Java,
JavaScript, Perl, Python, and many others. These properties make JSON an ideal
data-interchange language.”
(http://www.json.org/)

© Copyright 2008, Open-Xchange GmbH - 23 -

http://www.json.org/
http://javascript.crockford.com/

 6.2. Groupware Data Synchronization – OXDAV – WebDAV/XML

The OXDAV interface is used for the communication between the Open-Xchange
OXtender for Microsoft Outlook© and the Open-Xchange Server 6.

It is based on XML structures, containing the commands and the resulting data.

This XML objects are transferred through the internet protocol WebDAV, which is
based on http.

This interface offers all functionality which is necessary for the Open-Xchange
OXtender for Microsoft Outlook© to work properly. Therefore it is the best
protocol for synchronizing complete data sets with external applications (i.e. rich
clients).

 6.3. Provisioning – Remote Method Invocation (RMI)/SOAP

The Open-Xchange administration framework communicates via Java Remote
Method Invocation or SOAP(Java RMI). This interface allows execution of all the
administrative actions on the Open-Xchange system. This includes context
management, user administration, group and resource configuration as well as
the registration of the back-ends database cluster and filestore.

The RMI/SOAP interface into the Open-Xchange administration framework is used
for the integration into existing user provisioning systems and HR-Software
processes.

Any Java based application can use this interface to gain access to administrative
functions. The main advantage of this communication interface is the lack of any
artificial protocol overhead which results in very high performance.

“Java Remote Method Invocation (Java RMI)/SOAP enables the programmer to
create distributed Java technology-based to Java technology-based applications,
in which the methods of remote Java objects can be invoked from other Java
virtual machines, possibly on different hosts. RMI uses object serialization to
marshal and unmarshal parameters and does not truncate types, supporting true
object-oriented polymorphism.”
(http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp)

 6.3.1. Syn chronization from LDAP/ADS

The user database of Open-Xchange Server 6 can be synchronized with an
existing LDAP Server or Active Directory Server via a special script. The following
functionality are possible:

– Create new user

© Copyright 2008, Open-Xchange GmbH - 24 -

http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp

– Modify existing user

– Delete user

– Create group

– Delete group

– Allocate user to group

– Support of all Open-Xchange fields

 6.4. System Administration Interfaces

Open-Xchange offers two very important interfaces for System Administrators:

 6.4.1. Monitoring – Java Management Extensions

Open-Xchange makes use of the Java Management Extensions (JMX) to provide
all runtime statistics and potential errors to monitor the health status of the
Open-Xchange Server 6.

This interface can be accessed with any application capable to access JMX
information. Additionally Open-Xchange delivers command line monitoring tools,
which can be used to output all collected monitoring information as plain text to
the console. This can be used for the flexible integration into any monitoring
framework.

“Java Management Extensions (JMX) technology provides the tools for building
distributed, Web-based, modular and dynamic solutions for managing and
monitoring devices, applications, and service-driven networks. By design, this
standard is suitable for adapting legacy systems, implementing new management
and monitoring solutions, and plugging into those of the future.”
(http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/)

 6.4.2. Administration – Command-line Tools

In addition to the Java RMI interface, the Open-Xchange administration
framework allows access to all relevant functions through command-line tools.

This allows the administrator to do all relevant administration tasks fast and
system independent directly on the console. This makes it very easy to fulfill the
necessary tasks in the administrator's daily work.

© Copyright 2008, Open-Xchange GmbH - 25 -

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

	 1.Introduction
	 2.Design Goals
	 2.1. Scalability
	 2.2. Multi Tenant / Multi Domain
	 2.3. Integration
	 2.4. Data Center

	 3.Architecture Overview
	 3.1. OSGi-Support

	 4.Architecture Details
	 4.1. Scalability
	 4.1.1. Deployment Flexibility
	 4.1.2. Scalability concepts definition
	 4.1.3. “Scale Up” or “Vertical Scaling”
	 4.1.4. “Scale Out” or “Horizontal Scaling”
	 4.1.4.1 Open-Xchange Application
	 4.1.4.2 Back End Services
	4.1.4.2.1.Read-Write Separation
	4.1.4.2.2.Physical Database Partitioning
	4.1.4.2.3.Logical Database Partitioning

	 4.2. Multi Tenant / Multi Domain
	 4.3. Integration
	 4.4. Data Center Integration
	 4.4.1. Cluster Manageability
	 4.4.2. Monitoring

	 5.Frontend Customization
	 5.1. Themeability
	 5.2. Plug-in Concept for the User Interface
	 5.3. UWA-Support

	 6.Open-Xchange Interfaces
	 6.1. Groupware Data Functions – Java Script Object Notation
	 6.2. Groupware Data Synchronization – OXDAV – WebDAV/XML
	 6.3. Provisioning – Remote Method Invocation (RMI)/SOAP
	 6.3.1. Synchronization from LDAP/ADS

	 6.4. System Administration Interfaces
	 6.4.1. Monitoring – Java Management Extensions
	 6.4.2. Administration – Command-line Tools

